• Plain bearing bushing Common considerations

    Plain bearing bushing Common considerations

    In the moving parts, the parts are worn due to long-term friction. When the clearance between the shaft and the hole wears to a certain extent, the parts must be replaced. Therefore, the designer chooses a lower hardness and better wear resistance when designing. The material is a shaft sleeve or a bushing, which can reduce the wear of the shaft and the seat. When the shaft sleeve or the bushing is worn to a certain extent, it can be replaced. This can save the cost of replacing the shaft or the seat. Generally, the bushing and the seat are used. Interference fit, and clearance fit with the shaft, because wear is unavoidable in any case, can only extend the life, and shaft parts are relatively easy to process; some new designers do not like this design, think that It is an increase in cost during manufacture, but after a period of use, it is still necessary to modify it in accordance with this method. However, the modification is likely to reduce the accuracy of the equipment. The reason is simple. Secondary processing cannot guarantee the position of the center of the seat hole.   In addition, the bushing is used to replace rolling bearings (such as camshafts) in places with low speed, high radial load and high clearance requirements (actually, the bushing is also considered as a plain bearing). The material requires low hardness and resistance Grinding, the inner hole of the shaft sleeve can be ground and scraped to achieve high matching accuracy. There must be an oil groove on the inner wall. Lubrication of the shaft sleeve is very important. If dry grinding, the shaft and shaft sleeve will be scrapped quickly. Recommended here Scrap the inner hole wall of the sleeve during installation, which can leave many small pits and enhance lubrication   1. Plain bearing bushing generally function as sliding bearings. In order to save material, the wall thickness of the sleeve is designed according to the axial load required by the bearing. Generally, cast copper and bearing alloy materials are used. The shaft sleeve is divided into open and non-open, which depends on the needs of the structure. Generally, the sleeve cannot bear axial load, or can only bear small axial load. Or add thrust bearings. The shaft is generally round.   2.Bushings generally function as linings. The shaft can be of various shapes, as is the bushing. Bushings can be used to prevent corrosion, eliminate assembly gaps, etc.   The shaft sleeve generally plays the role of axial positioning, and the end is in contact with the gear bearing and other parts under compressive stress. Sometimes the shaft must be matched with seals and other standard parts, and it is necessary to ensure that the middle part can pass through the shaft end. The shaft sleeve and seal ring can be made thin to ensure that the parts pass through.   Plain bearing bushing have different uses in different occasions, can be axially positioned, can reduce friction and vibration, and can also ...
  • Flange (tool part)

    Flange (tool part)

    Flange (tool part) Flange (Flange), also known as flange flange or flange. The flange is a part that connects the shaft and the shaft, and is used for the connection between the pipe ends. It is also used in the equipment inlet and outlet for the connection between two devices, such as the reducer flange. The flange connection or flange joint refers to a detachable connection in which a flange, a gasket and a bolt are connected to each other as a group of combined sealing structures. Pipe flange refers to the flange used for piping in pipeline installations, and used on equipment refers to the inlet and outlet flanges of equipment. There are holes in the flange, and the bolts tightly connect the two flanges. The flanges are sealed with gaskets. Flange is divided into threaded connection (thread connection) flange, welding flange and clip flange. The flanges are used in pairs. Wire joint flanges can be used for low pressure pipelines, and welded flanges can be used for pressures above 4 kg. Add a gasket between the two flanges and tighten with bolts. Different pressure flanges have different thicknesses, and they use different bolts. When pumps and valves are connected to pipelines, the parts of these equipment and equipment are also made into corresponding flange shapes, also known as flange connections. Any connection parts that are bolted at the periphery of two planes and closed at the same time are generally referred to as "flange", such as the connection of ventilation ducts, this type of parts can be called "flange parts". However, this connection is only a part of the equipment, such as the connection between the flange and the water pump, it is difficult to call the water pump a "flange-type part". Relatively small ones, such as valves, can be called "flange parts". Reducer flange, used to connect the motor and the reducer, and the connection between the reducer and other equipment. Flange connection is to fix two pipes, pipe fittings or equipment respectively on a flange plate first, and add flange pads between the two flange plates, and fasten them with bolts to complete the connection. . Some pipe fittings and equipment already have flanges, which are also flange connections. Flange connection is an important connection method for pipeline construction. The flange connection is easy to use and can withstand large pressures. In industrial piping, in the home, the diameter of the pipe is small and the pressure is low, and the flange connection is not visible. If in a boiler room or production site, flanged pipes and equipment are everywhere. [1] According to the connection method, the flange connection types can be divided into: plate type flat welding flange, neck flat welding flange, neck welding flange, socket welding flange, thread flange, flange cover, neck welding ring Loose sleeve flange, flat welding ring loose sleeve flange, ring groove surface flange and flange cover, large diameter flat flange, large diameter high neck flange,...
  • Tungsten disulfide powder as lubricant coating

    Tungsten disulfide powder as lubricant coating

    Tungsten disulfide powder as lubricant coating Tungsten disulfide powder can be sprayed on the surface of the substrate by dry cold air under 0.8Mpa (120psi) pressure. Spraying can be performed at room temperature and the coating is 0.5 micron thick. Alternatively, the powder is mixed with isopropanol to apply a sticky substance to the substrate. At present, tungsten disulfide coating has been used in many fields, such as automotive parts, racing engine parts, aviation parts, bearings, shafts, deep-sea vehicles, cutting tools, blades, cutting tools, knives, mold release, high-precision bearings, Valve components, pistons, chains, etc. In addition, tungsten disulfide is also used as a colored brush in the carbon industry. It can also be applied to super-hard materials and welding wire materials. Tungsten disulfide can completely replace molybdenum disulfide, with comparable price, better quality and stronger performance. In addition, due to the extremely low friction coefficient (0.03 under dynamic and 0.07 under static) of tungsten disulfide powder, its application field is infinitely broad. Anything is possible if you want to get it.
  • Which products can be processed by CNC machining center

    Which products can be processed by CNC machining center

    Which products can be processed by CNC machining center 1. Which products can be processed by CNC machining center Machining centers are suitable for complex machining, many procedures, and high requirements, which require the use of various types of ordinary machine tools and many tools, fixtures, and multiple machining and adjustment to complete the parts. The main objects of processing are box parts, complex curved surfaces, shaped parts, disks, sleeves, plate parts and special beads processing. 2. CNC machining center can process box parts Box parts generally refer to parts with more than one hole system, a cavity inside, and a certain proportion in the length, width, and height directions. Such parts are more commonly used in machine tools, automobiles, and aircraft manufacturing. Such parts generally require multi-position hole system and plane processing, with high tolerance requirements, especially strict shape and position tolerance requirements, usually through milling, drilling, expanding, boring, reaming, countersinking, tapping and other processes. There are many tools, it is difficult to process on ordinary machine tools, the number of tooling sets is high, the cost is high, the processing cycle is long, multiple clampings are required, the calibration is correct, and the number of manual measurements is large. The tools must be frequently changed during processing. The important thing is that accuracy is difficult to guarantee. For machining centers that process box-type parts, when there are many machining stations, parts that require multiple rotations of the table can be completed. Generally, horizontal boring and milling machining centers are selected. When there are fewer machining stations and the span is not large. When it is large, you can choose a vertical machining center to process from one end. Complex surface The CNC machining center occupies a particularly important place in the machining industry, especially in the aerospace industry. It is difficult or impossible to complete the complex surface using ordinary machining methods. In China, the traditional method is to use precision casting, and it is conceivable that its accuracy is very low. 3.CNC machining center can process complex curved surface parts Such as: various impellers, wind guide wheels, spherical surfaces, various curved forming dies, propellers and propellers of underwater vehicles, and some other free-form surfaces. These parts can be processed by machining centers. The more typical ones are: a.CNC machining center cam Cams, as the basic components of mechanical information storage and transmission, are widely used in various automatic machines. Such parts have various curved disk cams, cylindrical cams, conical cams, barrel cams, and end cams. Machining this kind of parts can choose three-axis, four-axis linkage or five-axis linkage machining center according to the complicated program of cam. b. Integral impeller of CNC machining center Such parts a...
  • What is CNC machining?

    What is CNC machining?

    CNC machining Generally CNC machining refers to computer-controlled precision machining, CNC machining lathes, CNC machining milling machines, CNC machining boring and milling machines, etc. Introduction CNC is also called computer gong, CNCCH or CNC machine tool. It is actually a name from Hong Kong. Later it was introduced to the Pearl River Delta in mainland China. It is actually a CNC milling machine. This is a new type of processing technology. The main job is to compile processing programs, that is, to turn the original manual work into computer programming. Of course, you need to have experience in manual processing. Determination of CNC machining routes NC lathe feed processing route refers to the path that the turning tool moves from the tool setting point (or fixed origin of the machine tool) until it returns to that point and ends the machining program, including the path of cutting processing and non-cutting such as cutting in and out Empty travel path. The feed route for finishing is basically performed along the contour of its parts. Therefore, the focus of determining the feed route is to determine the feed route for rough machining and empty stroke. In CNC lathe processing, the determination of processing routes generally follows the following principles. ① The precision and surface roughness of the workpiece to be processed should be guaranteed. ② Make the processing route the shortest, reduce the idle travel time, and improve the processing efficiency. ③ Simplify the workload of numerical calculation and simplify the processing procedures. ④ For some reusable programs, subroutines should be used. CNC pros and cons CNC machining has the following advantages: ① Reduce the number of tooling a lot, and do not need complicated tooling to process parts with complex shapes. If you want to change the shape and size of the part, you only need to modify the part processing program, which is suitable for new product development and modification. ② Stable processing quality, high processing accuracy and high repeat accuracy, adapt to the processing requirements of the aircraft. ③ The production efficiency is higher in the case of multi-variety and small batch production, which can reduce the time for production preparation, machine tool adjustment and process inspection, and reduce the cutting time due to the use of the optimal cutting amount. ④ It can process complex profiles that are difficult to process by conventional methods, and even machining parts that cannot be observed. The disadvantage of NC machining is that the cost of machine tools and equipment is high, requiring a high level of maintenance personnel. CNC machining NC machining refers to machining performed by CNC machining tools. CNC index controlled machine tools are programmed and controlled by CNC machining language, usually G code. The NC machining G code language tells the NC machine tool which Cartesian position coordinates are used, and controls the tool feed speed an...
  • Metal Connectors

    Metal Connectors

    CONNECTORS A connector is a coupling device that joins electrical terminations to create an electrical circuit. Connectors enable contact between wires, cables, printed circuit boards, and electronic components.  we attend customer design and manufacture an expansive portfolio of connectors that are engineered to reliably transmit data, power, and signal in the harshest environments, under the most extreme use. Our connectors are manufactured to reduce application size and power usage while enabling increased performance. Our audio and visual connectors offer enhanced board retention and EMI shielding. Our automotive connectors are build to withstand harsh conditions of highway and off-road transportation. Our card edge connectors and sockets support the current SDRAM and DDR memory generations and the new DDR2, DDR3, and DDR4 as well as FBDIMM generations.
  • Medical Equipment Metal Accessories

    Medical Equipment Metal Accessories

    Medical Equipment Metal Accessories Xiamen Zhonglida Machinery meets with more and more important success by working high-performance materials using CNC lathe machining,turning,milling of titanium. Attention to market demands and the liaison with research and development centres have allowed the creation of pieces that combine functionality and design.
  • Automobile Shock Absorber Accessories

    Automobile Shock Absorber Accessories

    Automobile Shock Absorber Accessories stainless steel material custom design drawing
  • Medical world

    Medical world

    Titanium Medical Parts Titanium is a transition metal often used in the aerospace, medical, and military industries. It is as strong as steel, but 40% lighter. Titanium is ductile and has a high melting point, making it ideal for extreme heat applications. Applications Titanium implants Titanium screw

A total of 1 pages

Leave a message
welcome to zhonglida
If you have questions or suggestions, please leave us a message,we will reply you as soon as we can!